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SUMMARY

We present a grid-free or meshless approximation called the kinetic meshless method (KMM), for the
numerical solution of hyperbolic conservation laws that can be obtained by taking moments of a Boltzmann-
type transport equation. The meshless formulation requires the domain discretization to have very little
topological information; a distribution of points in the domain together with local connectivity information
is sufficient. For each node, the connectivity consists of a set of nearby nodes which are used to evaluate
the spatial derivatives appearing in the conservation law. The derivatives are obtained using a modified
form of the least-squares approximation. The method is applied to the Euler equations for inviscid flow
and results are presented for some 2-D problems. The ability of the new scheme to accurately compute
inviscid flows is clearly demonstrated, including good shock capturing ability. Comparisons with other
grid-free methods are made showing some advantages of the current approach. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical solution of partial differential equations requires the generation of a grid or
mesh in the computational domain. Mesh generation technology has seen rapid advances in
the last two to three decades. The development of multi-block and unstructured meshing tech-
niques now allows investigation of 3-D problems involving complex geometries. In spite of these
advances, mesh generation is still the most difficult and time-consuming part of the simulation
procedure. This difficulty is compounded when the geometry is complex with multiple bodies,
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small gaps, deforming boundaries and bodies in relative motion. For a realistic 3-D configura-
tion, grid generation can take several hundred man-hours of work. The quality of the numerical
solution depends on the quality of the mesh which puts increased burden on the task of grid
generation.

Meshless methods are expected to overcome many of these difficulties associated with grid
generation. The basic idea in meshless methods is to remove the requirement of a grid or mesh;
instead a distribution of points in the computational domain is used for the numerical solution of
the partial differential equations. The points need not be arranged in any regular pattern and can
even be randomly distributed. The only geometrical information required on the point distribution
is the local connectivity, i.e. for each point we need to know the set of neighbouring points which
will form the stencil for the numerical approximation. We use the words connectivity and stencil
to mean the same thing. A stencil is generally associated with a fixed topology but in the case
of meshless methods it is arbitrary. The generation of a point distribution is expected to be much
easier than generating a grid. There are two approaches to generating a point distribution. The
first and easiest way is to use existing grid generation tools to construct a grid and then take the
vertices of the grid as the points [1, 2]. The second way of obtaining a point distribution is to
directly generate the points without generating a grid. Löhner [3] has developed an advancing front
point generation technique which is an order of magnitude faster than unstructured grid generation.
Recently, Varma et al. [4] are developing point distributions using quadtree/octree approach which
is expected to be highly automatic and capable of handling complex configurations. Using meshless
methods, we are also freed from the problem of having to deal with small cut cells and associated
issues [5].

The most commonly used discretization procedure in meshless methods is the least-squares
approximation. The basic idea of this approach is to assume a certain functional form of the
unknown function and fit the parameters using a least-squares minimization. The functional form
can be obtained in several ways, the most common being a truncated Taylor’s series. The use
of least-squares gives the meshless character to the scheme. Ghosh and Deshpande [6] used
the least-squares technique to develop the least-squares kinetic upwind method (LSKUM), a
kinetic upwind meshless approximation for Euler equations governing inviscid compressible
flows which are hyperbolic. Batina [7] proposed a meshless method based on artificial dissi-
pation and solved Euler equations over full aircraft. Morinishi [8] and Löhner et al. [9] have
developed an upwind-type method for hyperbolic equations and solved 2-D and 3-D problems.
However, in both the methods the upwind directions are not determined from physical consider-
ations but by the geometry of point distributions. Balakrishnan and Praveen [10, 11] and Sridar
and Balakrishnan [12] have developed a class of upwind meshless schemes for conservation
laws which were inspired by flux-differencing ideas. These schemes have been applied to many
test cases involving 2-D inviscid and viscous flows. All the above methods can be regarded as
generalized finite difference schemes since they contain the usual finite differences as special
cases.

The outline of the paper is as follows. The basic idea of LSKUM is briefly discussed followed by
kinetic meshless method (KMM). The dual least squares (DLS) is introduced and is used to derive
the KMM. Some theoretical advantages of using a kinetic formulation are then discussed. The KMM
is extended to higher-order accuracy using a reconstruction approach. Boundary conditions are
introduced and a numerical order of accuracy study is performed on a model scalar conservation
law. The rotational invariance property of KMM is proved. Finally, the results of numerical
computations are presented for a large number of test cases.
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2. LEAST-SQUARES KINETIC UPWIND METHOD

The LSKUM is a kinetic meshless method which is based on the idea of kinetic schemes [13, 14].
An upwind meshless discretization of the Boltzmann equation [15] leads to an upwind scheme
at the Euler level after taking moments [15, 16] in the velocity space. The upwind discretization
is constructed at the kinetic level where the molecular velocities define the upwind directions.
One-sided (also called split or half) stencils which are chosen based on the sign of the molecular
velocity are used to discretize the spatial derivatives arising in the Boltzmann equation. The use
of split stencils gives the upwind character to LSKUM.

The Euler equations governing inviscid compressible flows can be written in the conservation
form as follows:

�U
�t

+ �
�x

GX + �
�y

GY = 0 (1)

where U =[�, �ux , �uy, E]� is the vector of conserved variables and (GX,GY) are the Cartesian
components of the flux vector,

GX =[�ux , p + �u2x , �uxuy, (E + p)ux ]�, GY = [�uy, �uxuy, p + �u2y, (E + p)uy]� (2)

In the above equations � is the density, u= (ux , uy) is the fluid velocity, p is the pressure and E
is the energy per unit volume. For an ideal gas, we have p= �RT where R is the gas constant
and T is the absolute temperature. The energy density is given by E = p/(�− 1)+�|u|2/2. In the
present work the numerical computations are performed with R = 287Nm/kg and � = 1.4, which
is the ratio of specific heats.

The Euler equations can be obtained from the Boltzmann equation without collision term

�F
�t

+ vx
�F
�x

+ vy
�F
�y

= 0 (3)

by taking moments in the velocity space defined by

〈·〉 =
∫ ∫ ∫

�(vx , vy, I )(·) dvx dvy dI (4)

where F is the Maxwellian velocity distribution function [15], (vx , vy) are the Cartesian compo-
nents of molecular velocity, I is an additional variable corresponding to non-translational degrees
of freedom, and �=[1, vx , vy, I + (v2x + v2y)/2]� are the collisional invariants. In order to intro-
duce upwinding the full stencil Co at any point Po is split into four parts as indicated in Table I.
The Boltzmann equation is then discretized as

dFo
dt

+vx + |vx |
2

(
�F
�x

)
C1

+vx − |vx |
2

(
�F
�x

)
C2

+ vy + |vy |
2

(
�F
�y

)
C3

+vy − |vy |
2

(
�F
�y

)
C4

= 0

Table I. Split stencils for 2-D LSKUM.

x-split C1 = {Pj ∈ Co | x j�xo} C2 = {Pj ∈ Co | x j�xo}
y-split C3 = {Pj ∈ Co | y j�yo} C4 = {Pj ∈ Co | y j�yo}
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and after taking moments we obtain

dUo

dt
+

(
�
�x

GX+
)
C1

+
(

�
�x

GX−
)
C2

+
(

�
�y

GY+
)
C3

+
(

�
�y

GY−
)
C4

= 0 (5)

where GX±, GY± are kinetic split fluxes [16]. In LSKUM, the derivatives are computed using a
least-squares fit [6] on the corresponding stencil. LSKUM is extended to higher-order accuracy
using entropy variables and defect correction; the resulting scheme is known as q-LSKUM [17]
which also makes use of split stencils for flux derivatives as in Equation (5). The boundary
conditions for LSKUM/q-LSKUM are also derived at the molecular level using the specular
reflection model of kinetic theory [15], and make use of stencils which are split along the tangent
to the boundary [6].

3. KINETIC MESHLESS METHOD

The stencil Co used in q-LSKUM must contain sufficient points so that each of the four split
stencils defined in Table I contains atleast three points (excluding Po) so that the least-squares
problem is over-determined. This might lead to an increase in the stencil size and loss of local
nature of the stencil. For points near boundaries there may not be sufficient neighbours available
in some of the split stencils. In such cases, we have to use the full stencil for the corresponding
split flux derivatives. Moreover, the least-squares problem on each split stencil must be well
conditioned and must give accurate estimates of derivatives [18]. The full stencil is usually well
behaved in terms of these requirements [18]. Hence, it would be useful to develop a meshless
scheme that does not require stencil sub-division and the KMM was developed with this criteria in
mind.

In KMM, the approximation is performed with a single full stencil Co and there is no need to
split the stencil. Each stencil will in general have fewer number of points and a smaller support.
q-LSKUM uses split stencils in order to satisfy the upwind principle. In KMM, upwinding is intro-
duced with the help of a modified least-squares approximation called the dual least-squares (DLS)
approximation. In DLS, we introduce mid-point states which are defined in an upwind manner
leading to a stable discretization. The idea of mid-point states in a least-squares framework has
also been used by Morinishi [8], Balakrishnan and Praveen [10, 11], Sridar and Balakrishnan [12],
Löhner et al. [9] and Junk [19], at the macroscopic level while in the present work the kinetic
approach is used to derive the scheme. We show that this kinetic approach has some advantages
in terms of the size of the matrices involved and better conditioning of the least-squares problem.

3.1. Dual least-squares approximation

Let Po be the point where we want to approximate the derivatives and select a connectivity Co as
shown in Figure 1. Assume that the value of F at the mid-point of the line PoPj is known and
denote it as Fj/2. Using Taylor’s formula we can write

Fj/2 = Fo + 1

2
�x j

�F
�x

+ 1

2
�y j

�F
�y

+ O(h2), j = 1, . . . , N
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Figure 1. Definition of rotated coordinate frame for computation of mid-point fluxes.

where �x j = x j − xo, �y j = y j − yo, N is the number of points in the stencil of Po, the derivatives
are at node Po and h is some characteristic point spacing. Neglecting the O(h2) terms we get the
following system of equations:

Fj/2 = Fo + 1

2
�x j

�F
�x

+ 1

2
�y j

�F
�y

, j = 1, . . . , N (6)

which is over-determined since N>2. The two unknown derivatives are determined by solving a
weighted minimization problem

min
∑
j

w j [Fj/2 − Fo − (�x j/2)�x F − (�y j/2)�y F]2 wrt �x F, �y F

where �x , �y denote partial differentiation with respect to x, y, respectively. This leads to a system
of two coupled equations, called the normal equations,[ ∑

w j�x
2
j

∑
w j�x j�y j∑

w j�x j�y j
∑

w j�y2j

] [
�x F

�y F

]
= 2

[∑
w j (Fj/2 − Fo)�x j∑
w j (Fj/2 − Fo)�y j

]
(7)

The solution of the above equations can be written in compact form as follows:(
�F
�x

)
Co

=∑
j
a j (Fj/2 − Fo),

(
�F
�y

)
Co

= ∑
j
b j (Fj/2 − Fo) (8)

where the coefficients (a j , b j ) are given by

a j = 2
(
∑

wk�y2k )w j�x j − (
∑

wk�xk�yk)w j�y j
Do

(9)

b j = 2
(
∑

wk�x2k )w j�y j − (
∑

wk�xk�yk)w j�x j
Do

(10)
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and

Do = ∑
w j�x

2
j
∑

w j�y2j − (
∑

w j�x j�y j )
2 (11)

is the determinant of the matrix in Equation (7). By Cauchy–Schwarz inequality, the determinant
is always non-negative, Do�0, and is zero if and only if

�y j = constant×�x j for all j ∈ Co

i.e. if all the points in Co lie on a straight line passing through Po. In this case, the derivatives cannot
be determined since the least-squares problem is singular (degenerate case). The positive quantities
w j in the least-squares formulation are monotonically decreasing functions of distance between
two points. In this work, we use inverse distance weights which are given by w j = (�x2j +�y2j )

−p/2

with p�0.

Remark
There is a slightly different way of representing the solution of the least-squares approximation
which is also useful for coding purposes. The set of weighted over-determined equations (6) can
be written as

√
WX∇F = √

W�F (12)

where

∇F =
[

�x F

�y F

]
, X = 1

2

⎡
⎢⎢⎢⎢⎣

�x1 �y1

�x2 �y2

...
...

�xN �yN

⎤
⎥⎥⎥⎥⎦ , �F =

⎡
⎢⎢⎢⎢⎢⎣

F1/2 − Fo

F2/2 − Fo

...

FN/2 − Fo

⎤
⎥⎥⎥⎥⎥⎦ (13)

and
√
W = diag[√w1

√
w2 . . .

√
wN ] (14)

Equation (12) is over-determined since N>2 and we solve it using a least-squares fit

minimize (X∇F − �F)�W (X∇F − �F) wrt ∇F (15)

where ∇F is the gradient vector of F . The solution of this minimization problem gives

∇F = (X�WX)−1X�W�F =: M�F (16)

The matrix M is of size 2× N and its entries contain the coefficients (a, b),

M = (X�WX)−1X�W =
[
a1 a2 . . . aN
b1 b2 . . . bN

]
(17)
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3.2. Derivation of KMM

The KMM is built on the DLS approximation together with upwind-biased specification of mid-
point distribution at the kinetic level. Substituting the DLS approximation (8) into the Boltzmann
equation (3) we obtain

dFo
dt

+ vx
∑

a j (Fj/2 − Fo) + vy
∑

b j (Fj/2 − Fo) = 0 (18)

The mid-point velocity distributions Fj/2 are as yet unspecified. The simplest approximation is to
use averaging, Fj/2 = (Fo + Fj )/2, but this leads to a central difference-type discretization which
is unstable for hyperbolic equations. To obtain a stable discretization an upwind bias has to be
introduced into the numerical scheme. In kinetic schemes, the upwind directions are determined
by the molecular velocities and hence we take the following approximation:

Fj/2 =
{
Fo if v · n̂ j�0

Fj if v · n̂ j�0
(19)

where n̂ j is a unit vector directed from Po to Pj as shown in Figure 1. Using Equation (19) in
(18) and taking moments we obtain the semi-discrete update equation for the conserved variables

dUo

dt
+ ∑[a j (GX j/2 − GXo) + b j (GY j/2 − GYo)] = 0 (20)

where GX j/2,GY j/2 are the mid-point fluxes given by

GX j/2 = 〈vx Fj/2〉 = R−1
j [A j cos � j − Bj sin � j ]

GY j/2 = 〈vy Fj/2〉 = R−1
j [A j sin � j + Bj cos � j ]

(21)

where � j is the angle made by n̂ j with the positive x-axis, and

A j =GX+(R jUo) + GX−(R jU j ), Bj =GY x+(R jUo) + GY x−(R jU j ) (22)

and R j is the rotation matrix given by

R j = R(� j ) =

⎡
⎢⎢⎢⎢⎣
1 0 0 0

0 cos � j sin � j 0

0 − sin � j cos � j 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ (23)

The expressions for the split fluxes are given in the Appendix. Equation (20) is an ordinary
differential equation in time; in the present work we integrate these equations using a three-stage
Runge–Kutta scheme [18].
Remark
If the point distribution is obtained from a Cartesian mesh and using a standard four-point stencil,
the above scheme reduces to finite volume method with kinetic split fluxes [16].
Remark
The extension of the above scheme to 3-D is straightforward and is given in [18].

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:1059–1089
DOI: 10.1002/fld



1066 C. PRAVEEN AND S. M. DESHPANDE

3.3. Kinetic versus macroscopic formulation

A meshless scheme can be formulated directly at the macroscopic, i.e. the Euler level, in contrast
to the Boltzmann level. Examples of such meshless schemes can be found in [8, 9, 12]. Let us look
at a macroscopic scheme [12] which also uses DLS approximation but at the macroscopic level so
that we deal with flux vectors. Let G= (GX,GY) denote the flux vector. Using the same notations
and definitions of KMM, we can approximate the directed flux G j/2 · n̂ j at the mid-point of
PoPj as

G j/2 · n̂ j = Go · n̂ j + 1

2
�x j

�
�x

(Go · n̂ j ) + 1

2
�y j

�
�y

(Go · n̂ j ) + O(h2)

= Go · n̂ j + 1

2

�x2j
�r j

�
�x

GXo︸ ︷︷ ︸
1

+1

2

�y2j
�r j

�
�y

GYo︸ ︷︷ ︸
2

+1

2

�x j�y j
�r j

(
�
�x

GYo + �
�y

GXo

)
︸ ︷︷ ︸

3

+O(h2)

Neglecting the O(h2) terms, there are three unknowns in the above equation and we can pose the
following minimization problem with respect to the unknowns:

min
∑
j

�r2j

[
G j/2 · n̂ j − Go · n̂ j − 1

2

�x2j
�r j

�
�x

GXo − 1

2

�y2j
�r j

�
�y

GYo

− 1

2

�x j�y j
�r j

(
�
�x

GYo + �
�y

GXo

) ]2

This leads to a system of three coupled equations which can be written in matrix notation as
AeXe = be where

Ae =

⎡
⎢⎢⎢⎣

∑
�x4j

∑
�x2j�y2j

∑
�x3j�y j∑

�x2j�y2j
∑

�y4j
∑

�x j�y3j∑
�x3j�y j

∑
�x j�y3j

∑
�x2j�y2j

⎤
⎥⎥⎥⎦ , Xe =

⎡
⎢⎢⎣

�xGXo

�yGYo

�yGXo + �xGYo

⎤
⎥⎥⎦ (24)

Note that only the first two elements of Xe, �xGX and �yGY , are required for the numerical
solution. The 2-D kinetic formulation (see Equation (7)) gives a 2× 2 matrix given by§

Ak =
⎡
⎣ ∑

�x2j
∑

�x j�y j∑
�x j�y j

∑
�y2j

⎤
⎦ (25)

§The weights are ignored since they do not change the conclusions of this section.
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In 3-D macroscopic formulation we obtain a set of six equations for six unknowns out of which only
three are required for the numerical solution; the corresponding 6× 6 matrix which is symmetric
is given by [20]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
�x4j

∑
�x2j�y2j

∑
�x2j�z

2
j

∑
�x3j�y j

∑
�x2j�y j�z j

∑
�x3j�z j

.
∑

�y4j
∑

�y2j�z
2
j

∑
�x j�y3j

∑
�y3j�z j

∑
�x j�y2j�z j

. .
∑

�z4j
∑

�x j�y j�z
2
j

∑
�y j�z

3
j

∑
�z3j�x j

. . .
∑

�x2j�y2j
∑

�x j�y2j�z j
∑

�x2j�y j�z j

. . . .
∑

�y2j�z
2
j

∑
�x j�y j�z

2
j

. . . . .
∑

�x2j�z
2
j

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

On the other hand, the corresponding matrix for 3-D KMM is a 3× 3 matrix given by

⎡
⎢⎢⎢⎣

∑
�x2j

∑
�x j�y j

∑
�x j�z j∑

�x j�y j
∑

�y2j
∑

�y j�z j∑
�x j�z j

∑
�y j�z j

∑
�z2j

⎤
⎥⎥⎥⎦

We can make the following observations:

• Macroscopic formulation leads to matrices with larger dimensions (3× 3 in 2-D and 6× 6
in 3-D) compared to kinetic formulation (2× 2 in 2-D and 3× 3 in 3-D).

• The matrix elements in the macroscopic formulation are of order h4 in contrast to kinetic
formulation where the elements are of order h2.

• Due to the above reasons the chances of ill-conditioning are more in the case of macroscopic
formulation. This is indeed the case as shown in Section 4.9.

• The above differences will magnify when we go to higher-order formulation since the size
of the matrix increases.

• There is a nice geometrical interpretation of solvability of the least-squares problem in the
case of kinetic formulation (not all points should lie on a straight line/plane in 2-D/3-D)
while no such characterization seems to be available in the case of macroscopic formulation.

The ill-conditioning of the matrix arising in the macroscopic formulation can be seen clearly
when we apply it to a Cartesian point distribution. Taking a standard four-point stencil the matrix
of the macroscopic formulation becomes

diag[2(h/2)4, 2(h/2)4, 0]

which is singular. On the other hand as mentioned before, KMM reduces to finite volume method
on this standard Cartesian stencil. The fact that we are dealing with a single scalar function
(velocity distribution function) in kinetic schemes as opposed to a flux vector leads to the above
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difficulties. We thus see an advantage in using a kinetic least-squares formulation as opposed to a
least-squares formulation at the macroscopic level.

3.4. Higher-order scheme

The scheme defined by (19)–(21) has zeroth-order consistency in general, i.e. it is exact for a
constant function. On a Cartesian point distribution on which KMM reduces to finite volume
method, it has linear consistency also. On general point distributions, linear/first-order consistency
is obtained by using the reconstruction approach similar to the finite volume methods. Let V
be a complete set of macroscopic variables which uniquely determines the distribution function.
In the present work the set of macroscopic variables for reconstruction is taken to be the primitive
variables, V =[�,u, p]�. Define the left and right states at the mid-point by linear interpolation

V+
j/2 = Vo + 1

2�r j · ∇Vo, V−
j/2 = Vj − 1

2�r j · ∇Vj (26)

The mid-point distribution function is now defined using the interpolated values

Fj/2 =
⎧⎨
⎩
F(V+

j/2) if v · n̂ j�0

F(V−
j/2) if v · n̂ j�0

(27)

Using this approximation in (18) and taking moments we obtain (20) but now the mid-point fluxes
GX j/2, GY j/2 are evaluated with V+

j/2, V
−
j/2 instead of Vo, Vj , respectively. The gradients of V

are obtained using the coefficients (a j , b j ), for example

∇Vo = 1

2

∑
(a j , b j )(Vj − Vo)

where the factor ‘ 12 ’ is necessary because we are using the nodal values of V and not the mid-
point values. The same coefficients {(a j , b j )} are thus used for both the flux derivatives and for
derivatives required in the reconstruction step. Scheme (20), (21), (27) has linear consistency
on general point distributions. In Section 3.6 we perform numerical study of accuracy for a
scalar conservation law which indicates second-order accuracy even on random point distributions.
If the solution is discontinuous the numerical results will exhibit spurious oscillations due to loss
of monotonicity. In this case, the gradients used in the reconstruction step must be limited in order
to obtain wiggle-free solutions [18].

3.5. Boundary condition

For inviscid flows the velocity normal to a solid wall is zero if the wall is stationary and is equal
to the normal velocity of the wall if the wall is moving

ufluid · n̂ =uwall · n̂

In KMM we apply the interior scheme on the wall also and once all the variables are updated the
wall normal velocity is reset to satisfy the wall boundary condition. For a stationary wall, if u′ is
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the velocity obtained after updating by KMM, then the corrected velocity is given by

u=u′ − (u′ · n̂)n̂

Since KMM is rotationally invariant it is not even necessary to rotate the coordinate frame for a
wall point and the update is performed in the global coordinate frame. For lifting flows in subsonic
and transonic conditions, the point vortex model [21] together with the assumption of constant
entropy and enthalpy is used.

On the other hand, in q-LSKUM we have to rotate the coordinate system to the tangent–normal
frame and make use of stencils split along the tangent [6]. In KMM we use a single stencil for
boundary points also. The boundary conditions are thus inherent to each scheme and cannot be
used interchangeably without violating the basic nature of each scheme.

3.6. Numerical order of accuracy

To investigate the numerical order of accuracy of KMM, we have applied it to the following scalar
conservation law

��

�t
+ �

�x
(�ux ) + �

�y
(�uy) = 0, t>0, (x, y) ∈ (0, 1) × (0, 1) (28)

where u= (ux , uy) = (y,−x). This equation can be obtained by taking moments (with�= 1) of the
Boltzmann equation (3) with a Maxwell-type distribution given by F = (��/�) exp (−�|v − u|2)
for any �>0. The initial conditions are

u(x, y, 0) =
{
uo(y) on x = 0

0 elsewhere

where uo is smooth and compactly supported in [0, 1] so that the appropriate boundary conditions
are u(0, y, t) = uo(y), u(x, 1, t) = u(1, y, t) = 0, ∀t>0. The characteristics of Equation (28) are
clockwise concentric circles centred at the origin so that the steady-state solution is us(x, y)=
uo(

√
x2 + y2). We use the following compactly supported data:

uo(y)=
{
sin2(2�(y + 1/4)), 1

4<y< 3
4

0 elsewhere

Equation (28) with �= 0.1 is solved on a sequence of uniform Cartesian and non-uniform/random
point distributions which become successively finer. The non-uniform point distribution is obtained
by randomly perturbing the uniform Cartesian point distribution. The perturbed coordinates (x̄, ȳ)
are given by x̄ = x+0.4��x and ȳ = y+0.4��y, where �, � ∈ [−1, 1] are random numbers. Figure 2
shows an example of uniform and non-uniform points used in this study. The solution contours
on the finest uniform and random points is plotted in Figure 2(c) which shows that there is no
visual difference in the two solutions. For each point distribution, the L1, L2 and L∞ errors are
calculated and these are plotted in Figure 3 against a point spacing size h which is defined as

h =max
i

max
j∈Ci

|x j − xi |
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(a) (b) (c)

Figure 2. (a) Uniform; (b) random point distributions; and (c) solution for scalar test case.

Figure 3. Error versus point spacing for uniform (left) and random (right) point distributions.

Table II. Computed order of accuracy on uniform and
non-uniform point distributions.

Point distribution L1 L2 L∞
Uniform 2.27 2.21 1.97
Random 2.19 2.12 1.90

The slope of the best straight line fit for the error as a function of h in log–log scale gives the
order of accuracy and these are listed in Table II. The best fit lines are also shown in Figure 3.
These results show an effective second-order accuracy for the method.
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3.7. Rotational invariance property

The least-squares approximation can be performed in any local Cartesian coordinate system, unlike
grid-based finite difference schemes in which the grid lines define the coordinate frame. Since the
solution of the partial differential equations must be independent of the coordinate frame we expect
the numerical scheme to be invariant to coordinate transformations. This invariance implies that
the error in the numerical solution and the numerical dissipation do not depend on the coordinate
frame which is an important property of genuinely multi-dimensional schemes. The least-squares
approximation is invariant to coordinate translation since the difference of coordinates �x j , �y j are
invariant. The other type of transformation is rotation of coordinate frame. Consider the term v·∇F
in the Boltzmann equation, which is a scalar and is invariant to rotational transformations. The
DLS approximation is

v · ∇F = vx
∑

a j (Fj/2 − Fo) + vy
∑

b j (Fj/2 − Fo)

= ∑
(vxa j + vyb j )(Fj/2 − Fo)

Now Fo, Fj/2 are scalars and hence the DLS approximation is invariant if (vxa j +vyb j ) is a scalar.
By the quotient rule of tensors [22] this is satisfied if (a j , b j ) is a vector. If the coordinate frame
is rotated by an angle � then the coefficients in the new frame must be related to the (a j , b j ) by[

ā j

b̄ j

]
= S(�)

[
a j

b j

]
, S(�) =

[
cos � sin �

− sin � cos �

]
(29)

where S is the rotation matrix for a 2-D vector. In the new frame we have X̄ = XS, W̄ = W so
that the matrix of coefficients as given by Equation (17) in the new frame is given by

M̄ = (X̄�W̄ X̄)−1 X̄�W̄ = SM

which proves the desired result. This establishes the rotational invariance property of KMM at the
Boltzmann level which will be preserved under moments. We next show the rotational invariance
property directly at the Euler level by making use of some transformation properties of least-squares
approximation.

Theorem 1
Let �, u and 	 be scalar, vector and second-order tensor field variables, respectively. Then,

1. �r · ∇� is an invariant.
2. �r · ∇u is a vector.
3. ∇ · u is an invariant.
4. ∇ · 	 is a vector.

The least-squares estimates of the above quantities also have the same properties.

This theorem essentially says that the least-squares estimates of the derivatives of scalar, vector
and tensor field variables share the transformation properties of the corresponding exact differential
operator as shown in [18, 23].
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Theorem 2
The scheme defined by (20), (21), (26), (27) is rotationally invariant, i.e. if �n+1, un+1

x , un+1
y ,

En+1, is the update in one coordinate frame and �̄n+1, ūn+1
x , ūn+1

y , Ēn+1, in any other frame, then
they are related by,

�̄n+1 = �n+1, Ēn+1 = En+1,

[
ūn+1
x

ūn+1
y

]
= S

[
un+1
x

un+1
y

]

where S is the transformation matrix between the two frames.

Proof
See [18, 24]. �

4. NUMERICAL RESULTS

The KMM is applied to a number of 2-D test cases involving inviscid, compressible flows. The first
set of test cases involve subsonic flows which do not contain any discontinuities and the second set
of test cases involve discontinuities. The aim of solving these test cases is to demonstrate the good
accuracy and robustness properties of KMM over a wide range of Mach numbers. For some of the
test cases comparison with q-LSKUM results are also given which show the accuracy improvements
obtained with KMM. Finally, the theoretical advantages of using kinetic-level formulation over a
macroscopic formulation are confirmed by some numerical examples.

4.1. Selection of connectivity

The following test cases are solved on point distributions obtained from unstructured grids. While
meshless methods do not require a grid, the aim of the present work is to demonstrate the capabilities
of the new algorithm for solving a wide range of problems involving compressible flows. Hence,
we use available grids to easily obtain point distributions and connectivity. The connectivity or
the set of neighbouring nodes are obtained using the edge connectivity of the unstructured grid,
i.e. by taking all points which are connected to a given point by edges as shown in Figure 4.
This gives a small set of about four to six closest neighbours which is sufficient for the least-
squares approximation in KMM. Once the connectivity is obtained for all points the grid structure

P

P

P

A B

C

D
E

F

Figure 4. (Left) Connectivity selection for KMM; the solid lines give the edge neighbours
(centre and right) connectivity for boundary points.
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Figure 5. Point distributions for NACA-0012 airfoil: G1 (left) and G2 (right).

is not required by the flow solver. The geometric constraints on the connectivity for KMM are
very minimal: (1) there must be atleast three points in the connectivity. This is required for the
least-squares problem to be over-determined. (2) all the points in the connectivity must not lie on
a straight line since this will make the least-squares problem indeterminate.

The least-squares problem must also be well conditioned and the full connectivity Co at each
point Po must give accurate estimates of derivatives. Due to the absence of split stencils, we only
need to check the quality of one stencil at each point. The condition numbers for all the un-adapted
point distributions are less than 5 while for adapted points it is less than 50 which is acceptable.
The connectivity given by edge neighbours usually has more than three points. For a boundary
point P there might be only three edge neighbours as shown in Figure 4. This is still sufficient
for KMM and there is no need to enhance the stencil. For a corner point P on the boundary as
shown in Figure 4, there are only two edge neighbours in which case the connectivity is increased
by adding secondary neighbours D and C . The neighbours B and E are not added since they
lie on a line passing through points A and F , respectively, which are already in the connectivity.
When there are more secondary neighbours, the required number of extra neighbours are added
by selecting the closest points among them. For the two-point distributions for NACA-0012 airfoil
shown in Figure 5 and labelled G1 and G2, the connectivity statistics are given in Table III. We
note that almost 95% of the points have less than seven neighbours in the stencil.

The edge neighbours obtained from a triangulated grid lead to a small stencil with small spatial
support. In practice, we may not have a triangulation but only a distribution of points. In such
a case, a good approach is to first identify a local cloud of points using a search procedure like
quadtree (octree in 3-D) and triangulate this local cloud. Note, however, that this triangulation is
performed only to choose the stencil and so the quality of the triangulation is not very important.

If split stencils are used as in q-LSKUM then the primary (edge) neighbours may be insufficient
in which case some secondary neighbours must be included in the connectivity. This can lead
to an increase in the support of the connectivity. While the use of weights in the least-squares
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Table III. Connectivity statistics for NACA-0012 used in KMM and q-LSKUM.

G1 G2
Points
N\scheme KMM q-LSKUM KMM q-LSKUM

3 0.11 — 0.10 —
4 3.69 — 2.83 —
5 6.13 — 3.93 —
6 84.40 0.27 89.61 0.13
7 5.56 0.18 3.42 0.17
8 0.09 30.38 0.11 27.32
9 — 63.24 — 68.16

10 — 5.88 — 4.21
11 — 0.05 — 0.01

Note: The table lists the percentage of points having a specified number (N ) of neighbours.

This point must be added
to the connectivity

x

y

Po

Figure 6. If split connectivity is used as in q-LSKUM then the primary neighbours are insufficient.
An extra neighbour has to be added in the region x<xo as shown in this figure.

formula will reduce the effect of non-local data it cannot completely eliminate it since that would be
equivalent to removing the neighbour. Figure 6 illustrates the enlargement of the connectivity in the
case of split stencils since there are only two edge neighbours in the region x<xo. Table III shows
the connectivity statistics for q-LSKUM in which the edge connectivity has been enhanced so that
there are atleast three points in each split stencil and we note a small increase in the connectivity
size due to this requirement in q-LSKUM. If the points are obtained from a structured grid then
the neighbours can be easily found using the (i, j)-indexing of the mesh. For KMM, it is enough
to take a four-point connectivity consisting of (i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1).
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4.2. Subsonic flow over Williams airfoil

The Williams’ airfoil is a two-element airfoil for which incompressible potential solution is avail-
able. The flow is computed at a low Mach number of 0.15 on a point distribution consisting of
6415 points. There are 234 points on the main airfoil and 117 points on the flap. Figure 7 shows
a close-up view of the point distribution used in this computation. The connectivity statistics for
KMM and q-LSKUM are shown in Table IV which reveals a small increase in connectivity size
in the case of q-LSKUM.

The computed pressure coefficient on the airfoil and flap surface is shown in Figure 8 and
are compared with exact analytical solution. This shows that KMM is much more accurate than
q-LSKUM especially on the flap. Figure 9 shows the Mach number contours and also shows a
zoomed up view of the Mach contours near the leading edge of the airfoil. The Mach contours
in Figure 9 reveal distortion in the case of q-LSKUM and a numerical wake over the flap is also
evident in Figure 9, both of which are due to excessive numerical entropy generation in the case of
q-LSKUM while these are absent in the KMM results. The entropy should be constant throughout
the domain since this is a low-speed flow and there are no shocks. A measure of entropy production
is given by

S = p�−�

(p�−�)∞
− 1 (30)

Figure 7. Point distribution for William’s airfoil, close-up view.

Table IV. Connectivity statistics for Williams airfoil.

n 3 4 5 6 7 8 9

KMM 0.19 4.86 6.84 80.45 6.50 0.16 —
q-LSKUM — 0.02 0.12 71.36 27.79 0.69 0.02

Note: The statistics for KMM are for edge connectivity while that for q-LSKUM is after
enhancement such that there are three points in each split connectivity. q-LSKUM will not
work on edge connectivity alone.
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Figure 8. Comparison of pressure coefficients between KMM and q-LSKUM
for flow over Williams airfoil.

(a) (b) (c) (d)

Figure 9. Williams airfoil: Mach contours using (a,c) q-LSKUM and (b,d) KMM.

In the case of KMM, the minimum andmaximum entropies in the domain are Smin = −4.199× 10−4

and Smax = 7.246× 10−3. The lift and drag coefficients are 3.7608 and −0.0069 while the potential
solution gives 3.736 and −0.0001, respectively.

In the case of q-LSKUM, the minimum and maximum entropies in the computational domain
are Smin = −1.535× 10−3 and Smax = 1.031× 10−2, respectively, which is an order of magnitude
larger than in the case of KMM. The lift and drag coefficients obtained with q-LSKUM are 3.093
and 0.0197, respectively. We see that KMM gives a better prediction of drag coefficient which is
consistent with the fact that it produces less numerical entropy.

4.3. Subsonic flow over cylinder

Subsonic flow over a cylinder is computed at a free-stream Mach number of 0.38 using a total of
4111 points with 250 points on the cylinder. The connectivity statistics for KMM and q-LSKUM
are shown in Table V. The Mach contours around the cylinder are shown in Figure 10(a) and (b).
We see that the KMM solutions exhibit very good symmetry in the solution while the q-LSKUM
results show loss of left-right symmetry. This is due to numerical entropy production which also
leads to spurious separation and formation of an artificial wake in the case of q-LSKUM. In the
case of KMM (Smin =−0.00138, Smax = 0.000165) we observe low levels of numerical entropy
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Table V. Connectivity statistics for 2-D cylinder.

n 4 5 6 7 8 9

KMM 6.67 5.50 83.12 4.72 — —
q-LSKUM — 0.19 82.56 16.78 0.44 0.02

Note: The statistics for KMM are for edge connectivity while that for q-LSKUM is after
enhancement such that there are three points in each split connectivity.

Figure 10. Flow over cylinder: (a, b) Mach number and (c, d) entropy contours.

production compared to q-LSKUM (Smin =−0.00634, Smax = 0.022267) as seen in Figure 10(c)
and (d). The lift and drag coefficients obtained with KMM are 0.0006 and 0.0012 while those
from q-LSKUM are 0.0237 and 0.0324, respectively. We note that KMM predicts values closer to
zero indicating a more accurate solution.

4.4. Subsonic flow over Suddhoo–Hall airfoil

Suddhoo–Hall airfoil [25] is a four-element airfoil generated through conformal mapping techniques
and hence the exact potential solution is known. The numerical solution is computed using KMM
at a free-stream Mach number of 0.2 and zero angle of attack. The solution is computed on a
point distribution consisting of 14 091 points. The circulation about the four elements is found
to be 0.5387, 4.8095, 2.0925 and 0.7065 while the exact values are 0.5215, 4.7157, 2.0794 and
0.7216, respectively. The computed pressure coefficient on the airfoil surface is shown in Figure 11
together with the potential solution (symbols). It can be seen that the KMM solution compares
very well with the exact solution indicating the good accuracy of the numerical scheme.

4.5. Subsonic flow over NACA-0012 airfoil

The NACA-0012 airfoil is a standard configuration for testing new algorithms. For this geometry,
we use two points distributions labelled G1 and G2 as shown in Figure 5. In G1 there are 4385
points with 120 points on the airfoil while in G2 there are a total of 8912 points with 200 points on
the airfoil. The subsonic flow past NACA-0012 airfoil at a free-stream Mach number of 0.63 and
an angle of attack of 2◦ is computed on both the point distributions without using a limiter. The
Mach number contours are shown in Figure 12 while the pressure coefficient on the airfoil surface
is shown in Figure 14. The pressure coefficient in Figure 14 from q-LSKUM and KMM does not
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Figure 11. Pressure coefficient on the Suddhoo–Hall airfoil obtained using KMM (line) compared
with potential solution (symbols).

Figure 12. Mach contours using q-LSKUM and KMM on two-point distributions: (a) G1, q-LSKUM and
KMM and (b) G2, q-LSKUM and KMM.

show much difference but in the Mach contours we see a greater effect of numerical entropy in the
case of q-LSKUM which leads to bending of Mach contours near the airfoil surface. This is also
clearly seen in the entropy contours in Figure 13 which shows that q-LSKUM is generating higher
numerical entropy. As the number of points increases from G1 to G2 the entropy generation in
KMM is seen to reduce but q-LSKUM still generates a larger amount of spurious entropy. The lift
and drag coefficients are given in Table VI where the GAMM results [26] are also indicated. The
computed coefficients are seen to be within the range of GAMM results. The lift coefficient from
both the schemes is seen to be close since the numerical dissipation does not strongly affect the
pressure. The drag coefficient, which is ideally zero for this flow, is seen to be better predicted by
KMM while q-LSKUM predicts slightly higher values of drag coefficient indicating larger amount
of numerical dissipation.

4.6. Transonic flow over NACA-0012 airfoil

Transonic flow past NACA-0012 airfoil is computed at a free-stream Mach number of 0.85 and
angle of attack of 1◦. In this flow there is a shock on both the upper and lower surfaces of the airfoil
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Figure 13. Entropy contours using q-LSKUM and KMM on two point distributions: (a) G1, q-LSKUM
and KMM and (b) G2, q-LSKUM and KMM.

Table VI. Lift and drag coefficient for subsonic flow past NACA-0012.

Cl Cd

Points G1 G2 G1 G2

q-LSKUM 0.3358 0.3332 0.0029 0.0007
KMM 0.3263 0.3314 0.0016 0.0004
GAMM 0.329–0.336 0.003–0.07
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Figure 14. Comparison of pressure coefficient on (a) G1 and (b) G2 for
subsonic flow over NACA-0012 airfoil.

as seen in the pressure coefficient in Figure 15 and Mach contours in Figure 16. These results
also indicate good shock-capturing ability without any oscillations. On the finer-point distribution
G2 almost a single-point shock is obtained. In Figure 15, the pressure coefficient on G1 and
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Cl Cd

Points G1 G2 G1 G2

q-LSKUM 0.3514 0.4162 0.0529 0.0588
KMM 0.3712 0.3888 0.0544 0.0567
AGARD 0.330-0.389 0.0464-0.0590

Figure 15. Comparison of pressure coefficient (left) on G1, G2 using KMM with a finite
volume solution on G2 for transonic over NACA-0012, and comparison of lift and drag

coefficients from q-LSKUM and KMM (right).

Figure 16. Mach contours from q-LSKUM and KMM on two-point distributions: (a) G1, q-LSKUM and
KMM and (b) G2, q-LSKUM and KMM.

G2 are compared with a finite volume solution¶ which indicates correct shock location has been
obtained.

The transonic flow is also computed using q-LSKUM on the two-point distributions G1 and G2.
As in the subsonic case the connectivity is enhanced in order to satisfy the minimum neighbours
criteria. Figure 16 shows the comparison of the Mach contours with KMM. It can be seen that
KMM gives slightly better resolution of the shocks. The entropy contours in Figure 17 show that
KMM generates less spurious entropy in the leading edge portion of the airfoil while the maximum
entropy level is similarly predicted by both the schemes. The spurious entropy is considerably
reduced in the case of KMM on the finer-point distribution. The pressure coefficient is compared
in Figure 18 which shows that both the schemes predict more or less same shock location. The lift

¶The finite volume solution is computed on G2 using KFVS fluxes [16].
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Figure 17. Entropy contours from q-LSKUM and KMM on two-point distributions: (a) G1, q-LSKUM
and KMM and (b) G2, q-LSKUM and KMM.

(a) (b)

Figure 18. Pressure coefficient from q-LSKUM and KMM on two-point distributions: (a) G1 and (b) G2.

and drag coefficients are shown in Figure 15 which shows that the predicted values are in good
agreement with the AGARD values [27].

The transonic flow is also computed on an adapted distribution of points‖ shown in Figure 19(a).
This point distribution is obtained after five levels of adaptation and contains a total of 3777 points.
The Mach number contours are shown in Figure 19(b) which indicate that very sharp resolution
of discontinuities is possible with KMM. The pressure coefficient on the airfoil surface is shown
in Figure 19(c) where a finite volume solution is also shown (computed on G2). The KMM result
is seen to resolve the shock without oscillations and the shock location agrees well with the finite
volume solution.

‖The adaptation is performed using the unstructured grid and is not meshless in nature. An anisotropic adaptation
software called BAMG [28, 29] was used which adapts based on all the four conserved variables.
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(a) (b) (c)

Figure 19. Transonic flow over NACA-0012 using KMM: (a) adapted point distribution; (b) Mach
contours; and (c) pressure coefficient.

Figure 20. Pressure (left) and Mach number (right) contours for supersonic flow
over 2-D cylinder obtained with KMM.

4.7. Supersonic flow over cylinder

Supersonic flow over a cylinder at M∞ = 3.0 is computed on a distribution of 12 857 points.
This flow has a bow shock ahead of the cylinder and a region of recirculating flow at the rear.
Euler equations cannot be expected to give realistic solutions for such separated flows and we use
this test to only demonstrate the robustness of the scheme. The gradients in the reconstruction
are limited with min–max limiter and the CFL number of 0.1 is used. The computations ran
without any problem of negative density/pressure which is quite common in this test case due
to large expansion undergone by the flow in the rear portion of the cylinder. The pressure and
Mach contours are shown in Figure 20; the Mach contours reveal a slip line on the leeward side
of the cylinder. At the stagnation point behind the shock, the computed total pressure and total
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Figure 21. Geometry definition for scramjet intake.

Figure 22. Initial (left) and adapted (right) point distribution for scramjet intake, zoomed up view.

temperature are 0.3234 and 1.0006, while the exact values are 0.3283 and 1.0000, respectively,
which corresponds to an error of −1.5% and 0.06%. The lift and drag coefficients are found to
be 0.00000 and 1.337, respectively.

4.8. Scramjet intake

This test case involves a 2-D model of a scramjet intake [30] whose geometry is shown in Figure 21.
The flow involves a complex shock, expansion and contact discontinuity pattern and is a good test
of accuracy and stability. The inlet conditions are M = 5, � = 1, u = 1 and v = 0. The computations
are started on a point distribution of 8199 points shown on the left of Figure 22 and four levels
of adaptation are performed leading to a point distribution with 34 997 points as shown on the
right of Figure 22. The density contours on the initial and final point distributions are shown in
Figure 23. The solution on the coarse point distribution shows all the gas dynamic features but
they are poorly resolved. The finer-point distribution, however, shows very sharp resolution of
discontinuities. The contours also show that the symmetry of the flow about the centre-line of
the scramjet has been captured even though the point distribution is not exactly symmetric. The
variation of Mach number and pressure on the centre-line is shown in Figure 24.

The flow field involves several shock reflections and the shock angles measured from the adapted
solution are 16.44, 21.80, 18.12 and 20.32 while the exact values obtained from oblique shock
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Figure 23. Density contours for a scramjet intake on initial (left) and adapted (right) point distributions.

Figure 24. Mach number (left) and pressure (right) variation on the centre-line of scramjet intake obtained
with adapted point distribution.

Figure 25. Condition numbers for: (a) macroscopic scheme and (b) kinetic scheme on point distribution
obtained from unstructured grid with edge connectivity.

relations are 16.43, 21.72, 18.23 and 20.18, respectively. This test case clearly demonstrates that
KMM is capable of resolving complex discontinuous flows very accurately provided the points
are adapted based on the solution.
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(a) (b)

Figure 26. (a) Density contours just before blow-up with macroscopic scheme on edge connectivity
(minimum connectivity size is 4). The singularity of matrix due to cross (Cartesian)-type connectivity is

the cause of blow-up as seen in figure and (b) connectivity for point at which blow-up takes place.

(a) (b)

Figure 27. (a) Kinetic scheme using edge connectivity and (b) macroscopic scheme after enhancing
connectivity to five neighbours.

4.9. Kinetic versus macroscopic scheme

Some theoretical properties of meshless methods based on kinetic and macroscopic formulations
have been discussed in Section 3.3. Here, we present some numerical examples to show the
relative advantage of kinetic formulation over a macroscopic formulation. We consider two-point
distributions for NACA-0012 airfoil, the first one obtained from an unstructured grid and the second
from a structured grid. For the unstructured point distribution we take the edge connectivity as
described in Section 4.1 and compute the condition numbers of the matrices arising in the least-
squares problem given by Equation (24) for the macroscopic formulation and by Equation (25)
for the kinetic formulation. A scatter plot of the condition numbers is shown in Figure 25.
We see that for the macroscopic formulation the condition numbers are generally very much
higher, reaching even 107 while for the kinetic formulation it is within about 10. The macroscopic
scheme is applied on these point distributions using KFVS [16] approximation for the flux G j/2 ·n̂ j .
The macroscopic scheme fails (negative density and pressure) on this edge connectivity at a point
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Figure 28. Condition numbers for: (a) macroscopic scheme and (b) kinetic scheme on points from structured
grid. Most points have connectivity consisting of four neighbours.

Figure 29. Pressure contours and pressure coefficient using KMM on a structured point distribution for
NACA-0012. The connectivity is made up of standard four-point stencil.

shown in Figure 26(a). We note that the connectivity at this point is close to a standard Cartesian
stencil as seen in Figure 26(b) which from Section 3.3 is known to be singular for the macroscopic
scheme.

The kinetic scheme has no singularity problem on this connectivity with the condition numbers
being closer to unity as seen in Figure 25(b) and converges to a good solution as seen in the
pressure coefficient plot in Figure 27(a). For the macroscopic scheme the connectivity has to be
modified so as to reduce the condition numbers. A crude way of achieving this is to add extra
neighbours to all the points. For the present point distribution, the macroscopic scheme converges
when we increase each connectivity to contain atleast five neighbours. Figure 27(b) shows the
pressure coefficient of macroscopic scheme on the enhanced connectivity.

On the structured point distribution, the connectivity is selected using the (i, j)-indexing of the
grid. For any node (i, j) the connectivity is taken to be standard four-point stencil consisting of
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(i − 1, j), (i + 1, j), (i, j − 1) and (i, j + 1). For a boundary point, the connectivity is (i − 1, j),
(i + 1, j), (i, j + 1), (i − 1, j + 1) and (i + 1, j + 1). The condition numbers are plotted in
Figure 28(a). We again see that the macroscopic formulation leads to high condition numbers
(≈ 105) and in fact a large proportion of points are ill-conditioned. This is again due to the
ill-conditioning we have discussed on the standard four-point Cartesian stencil. The kinetic for-
mulation, however, leads to smaller condition numbers (<103/2) as seen in Figure 28(b). Due to
this ill-conditioning the macroscopic scheme blows up on this connectivity, whereas the kinetic
scheme has no problem in converging to a steady-state solution. The results of kinetic scheme
shown in Figure 29 indicate that it gives good resolution of shocks. In order to run the macroscopic
scheme on this point distribution the connectivity at a substantial number of points will have to
be modified.

5. SUMMARY AND CONCLUSIONS

A new meshless method using kinetic theory and least squares is developed which unlike
q-LSKUM does not require stencil sub-division. The upwind nature of the scheme is obtained by
defining mid-point distribution functions based on the direction of molecular velocity. On a regular
point distribution, this new scheme is shown to reduce to standard finite volume method based
on KFVS. Some theoretical advantages of using a kinetic formulation for deriving the meshless
scheme are shown in terms of smaller matrix size which can lead to better conditioning and hence
fewer connectivity constraints. An order of accuracy study on a model scalar conservation law
shows second-order accuracy. The scheme is also shown to be rotationally invariant, which is
a property shared by all physical laws and is a pre-requisite for a genuinely multi-dimensional
scheme.

The connectivity requirements of the solver are shown to be very minimal and the least-squares
problem is seen to be well conditioned. In contrast, it is seen that q-LSKUM requires enhancement
of connectivity in order to satisfy the over-determined condition and this is due to the stencil-
splitting involved in q-LSKUM. The accuracy of KMM has been amply demonstrated on a wide
variety of test cases and in conjunction with a limiter it is seen to be very robust. It is also shown
to give more accurate solutions compared to q-LSKUM especially on the low subsonic test cases.
With a suitable adaptation strategy very sharp resolution of discontinuities is possible with this
meshless scheme. The advantage of using a kinetic formulation is demonstrated numerically by
showing that the matrices are better conditioned than in a macroscopic formulation. This has many
important practical consequences especially when we go to 3-D point distributions where good
conditioning of the matrices involved is very essential for the stability of the numerical scheme.

APPENDIX A: KINETIC SPLIT FLUXES FOR 2-D KMM

GX± =

⎡
⎢⎢⎢⎢⎣

�(ux A
±
x ± Bx )

(p + �u2x )A
±
x ± �ux Bx

�(ux A
±
x ± Bx )uy
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±
x ± (E + p/2)Bx

⎤
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where

A
 = 1
2 [1 + erf(s
)], B = exp(−s2
)

2
√

��
, s
 = √

�u
 for 
 = x, y
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9. Löhner R, Sacco C, Onate E, Idelsohn. A finite point method for compressible flow. International Journal for
Numerical Methods in Engineering 2002; 53(8):1765–1779.

10. Balakrishnan N, Praveen C. A new upwind least squares finite difference scheme (LSFD-U) for Euler equations
of gas dynamics. Finite Volumes for Complex Applications, vol. II. Hermes Science Publications: Paris, 1999;
331.

11. Praveen C, Balakrishnan N. New least squares based finite difference scheme for compressible flows. Proceedings
of the 8th Asian Congress of Fluid Mechanics, Schenzen, China, 6–11 December 1999.

12. Sridar D, Balakrishnan N. An upwind finite difference scheme for meshless solvers. Journal of Computational
Physics 2003; 189:1–29.

13. Deshpande SM. Kinetic theory based new upwind methods for inviscid compressible flows. AIAA Paper 86-0275,
1986.

14. Deshpande SM. Kinetic flux splitting schemes. Computational Fluid Dynamics Review. Wiley: New York, 1995.
15. Chapman S, Cowling TG. The Mathematical Theory of Non-Uniform Gases. Cambridge University Press:

Cambridge, 1952.
16. Mandal JC, Deshpande SM. Kinetic flux vector splitting for Euler equations. Computers and Fluids 23(2):447–478.
17. Deshpande SM. Some recent developments in kinetic schemes based on least squares and entropy variables.

Conference on Solutions of PDE, held in honour of Prof. Roe on the occasion of his 60th birthday, Arcachon,
France, July 1998.

18. Praveen C. Development and application of kinetic meshless methods for Euler equations. Ph.D. Thesis,
Department of Aerospace Engineering, Indian Institute of Science, Bangalore, July 2004 (Available from
http://etd.ncsi.iisc.ernet.in/handle/2005/154/).

19. Junk M. Do finite volume methods really need a mesh? International Workshop on Meshfree Methods for PDE,
Bonn, September 2001.

20. Deshpande SM, Praveen C. On meshless methods based on kinetic and macroscopic formulations. FM Report,
2003-FM-11, Department of Aerospace Engineering, IISc, 2003.

21. Thomas JL, Salas MD. Far-field boundary condition for transonic lifting solutions to the Euler equations. AIAA
Paper No. 85-0020, 1985.

22. Aris R. Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover: New York, 1989.
23. Praveen C. Some properties of the least squares formula. FM Report, 2001-FM-06, Department of Aerospace

Engineering, IISc, 2001 (Available from http://eprints.iisc.ernet.in/archive/00000138/).

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:1059–1089
DOI: 10.1002/fld



KINETIC MESHLESS METHOD 1089

24. Praveen C, Deshpande SM. Rotationally invariant grid-less upwind method for Euler equations. FM
Report, 2001-FM-08, Department of Aerospace Engineering, IISc, 2001 (Available from http://eprints.iisc.
ernet.in/archive/00000117/).

25. Suddhoo A, Hall M. Test cases for the plane potential flow past multi-element aerofoils. Aeronautical Journal
1985; Paper No. 1369.

26. GAMM Workshop on numerical solution of compressible Euler flows, 1986.
27. AGARD-AR-211. Test Cases for Inviscid Flow Field Methods.
28. BAMG, Bi-dimensional Anisotropic Mesh Generation. http://pauillac.inria.fr/cdrom/ftp/bamg
29. Castro Diaz MJ, Hecht F, Mohammadi B. New progress in anisotropic grid adaptation for inviscid and viscous

flow simulations. RR-2671, INRIA, October 1995.
30. Kumar A. Numerical analysis of the scramjet-inlet flow field by using two-dimensional Navier–Stokes equations.

Technical Paper 1940, NASA, December 1981.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 55:1059–1089
DOI: 10.1002/fld


